Declaration of Performance No. LE-DE-22.1-SW-MW60-TOP-Panel

-nach Artikel 4 der Bauproduktenverordnung (EU-BauPVO) 305/2011

_	type				
-	Intended use	Thermal insulation for buildings Flat Roof Insulation Board			
	Trade name	BACHL Steinwolle® MW60 TOP Panel			
	Contact address of the manufacturer	KARL BACHL GmbH & Co. KG, Deching 3 Production plant: refer to product label	3, 94133 Röhrnbach, Mail: info	@bachl.de	
	Contact address of the agent	Not applicable			
	System of assessment and verification of	System 1 for reaction of fire			
	constancy of performance	System 3 for other characteristics			
	Notified body and certificate of conformity	Product type determination (PTD) according to System 1 (reaction to fire) and System 3 by notified body test laboratory: FIW-München, identification no. 0751 Not applicable			
	Declaration of performance regarding European Technical Assessment (ETA)				
		Declared performance			
	Essential characteristics	Features	Performance	Harmonised technical specification	
	Thermal resistance	Thermal resistance and thermal conductivity	R_D see table $\lambda_D = 0.038$ W/(mK)	•	
		Table: Thermal resistance in depe	ndence of thickness		
l		Thickness d_N [mm]	$R_{\rm D}$ [m ² K/W]		
		30	0,75		
		For all other thicknesses you can calculate further R_D -values via linear interpolation or per calculation R_D = thickness / λ_D . The thickness needs to be indicated in [m, meters], R_D needs to be rounded down in the second place after the decimal point on 0 or 5.		•	
		interpolation or per calculation R_D = thickness to be indicated in [m, meters], R_D needs to	ess / λ_D . The thickness needs be rounded down in the		
		interpolation or per calculation R_D = thickness to be indicated in [m, meters], R_D needs to second place after the decimal point on 0 d	ess / λ_D . The thickness needs be rounded down in the pr 5.		
-	Durability of thermal resistance against	interpolation or per calculation R_D = thickness to be indicated in [m, meters], R_D needs to second place after the decimal point on 0 of Thickness	ess / λ_D . The thickness needs be rounded down in the or 5. $d_N = 30$ mm; T(4)		
	Durability of thermal resistance against heat, weathering, ageing/degradation	interpolation or per calculation R_D = thickness to be indicated in [m, meters], R_D needs to second place after the decimal point on 0 d	ess / λ_D . The thickness needs be rounded down in the or 5. $d_N = 30$ mm; T(4)		
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics	interpolation or per calculation R _D = thicknet to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass	ess / λ_D . The thickness needs be rounded down in the or 5. $d_N = 30$ mm; T(4) ucts does not change. DS(70,90) A1		
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation	interpolation or per calculation R_D = thicknet to be indicated in [m, meters], R_D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool production Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for	ess / λ_D . The thickness needs be rounded down in the or 5. $d_N = 30$ mm; T(4) ucts does not change. DS(70,90) A1	EN 13162:201 +A1:2015	
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat,	interpolation or per calculation R _D = thickne to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation	ess / λ_D . The thickness needs be rounded down in the or 5. $d_N = 30$ mm; T(4) ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; ≥ 60 kPa		
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength	interpolation or per calculation R _D = thickness to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation	ess / λ_D . The thickness needs be rounded down in the or 5. d _N = 30 mm; T(4) ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; \geq 60 kPa PL(5)650; \geq 650 N		
-	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength	interpolation or per calculation R _D = thickness to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces	ess / λ_D . The thickness needs be rounded down in the or 5. $d_N = 30$ mm; T(4) ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; ≥ 60 kPa		
•	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against heat, weathering, ageing/degradation	interpolation or per calculation R _D = thickness to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces Long-term compressive creep behaviour	ess / λ_D . The thickness needs be rounded down in the pr 5. d _N = 30 mm; T(4) ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; \geq 60 kPa PL(5)650; \geq 650 N TR7,5; \geq 7,5 kPa NPD		
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against	interpolation or per calculation R _D = thickness to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces	ess / λ_D . The thickness needs be rounded down in the or 5. $d_N = 30 \text{ mm}; T(4)$ ucts does not change. DS(70,90) A1 mineral wool products. $CS(10)60; \ge 60 \text{ kPa}$ $PL(5)650; \ge 650 \text{ N}$ $TR7,5; \ge 7,5 \text{ kPa}$		
•	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against heat, weathering, ageing/degradation Water permeability	 interpolation or per calculation R_D = thicknet to be indicated in [m, meters], R_D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool production be preature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces Long-term water absorption Long-term water absorption by partial immersion 	ess / λ_D . The thickness needs be rounded down in the or 5. d _N = 30 mm; T(4) ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; \geq 60 kPa PL(5)650; \geq 650 N TR7,5; \geq 7,5 kPa NPD WS NPD		
•	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against heat, weathering, ageing/degradation Water permeability Water vapour permeability	 interpolation or per calculation R_D = thicknet to be indicated in [m, meters], R_D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool production be preature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces Long-term compressive creep behaviour Short-term water absorption Long-term water absorption Water vapour diffusion resistance factor 	ess / λ_D . The thickness needs be rounded down in the or 5. $d_N = 30$ mm; T(4) ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; \geq 60 kPa PL(5)650; \geq 650 N TR7,5; \geq 7,5 kPa NPD WS NPD MU1		
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against heat, weathering, ageing/degradation Water permeability	 interpolation or per calculation R_D = thicknet to be indicated in [m, meters], R_D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool production be preature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces Long-term water absorption Long-term water absorption by partial immersion 	ess / λ_D . The thickness needs be rounded down in the or 5. d _N = 30 mm; T(4) ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; \geq 60 kPa PL(5)650; \geq 650 N TR7,5; \geq 7,5 kPa NPD WS NPD		
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against heat, weathering, ageing/degradation Water permeability Water vapour permeability	 interpolation or per calculation R_D = thicknest to be indicated in [m, meters], R_D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool productivity of mineral wool productivity of mineral wool productivity and the specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Tensile strength perpendicular to faces Long-term compressive creep behaviour Short-term water absorption Long-term water absorption by partial immersion Water vapour diffusion resistance factor Dynamic stiffness 	ess / λ_D . The thickness needs be rounded down in the or 5. $d_N = 30 \text{ mm}; T(4)$ ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; $\geq 60 \text{ kPa}$ PL(5)650; $\geq 650 \text{ N}$ TR7,5; $\geq 7,5 \text{ kPa}$ NPD WS NPD MU1 NPD NPD		
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against heat, weathering, ageing/degradation Water permeability Water vapour permeability	interpolation or per calculation R _D = thicknest to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces Long-term compressive creep behaviour Short-term water absorption Long-term water absorption Water vapour diffusion resistance factor Dynamic stiffness Thickness Compressibility	ess / λ_{D} . The thickness needs be rounded down in the or 5. $d_N = 30 \text{ mm}; T(4)$ ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; $\geq 60 \text{ kPa}$ PL(5)650; $\geq 650 \text{ N}$ TR7,5; $\geq 7,5 \text{ kPa}$ NPD WS NPD MU1 NPD NPD NPD NPD		
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against heat, weathering, ageing/degradation Water permeability Water vapour permeability Impact noise transmission (for floors)	interpolation or per calculation R _D = thicknest to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces Long-term compressive creep behaviour Short-term water absorption Long-term water absorption Water vapour diffusion resistance factor Dynamic stiffness Thickness Compressibility Flow resistance	ess / λ_{D} . The thickness needs be rounded down in the or 5. $d_N = 30 \text{ mm}; T(4)$ ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; $\geq 60 \text{ kPa}$ PL(5)650; $\geq 650 \text{ N}$ TR7,5; $\geq 7,5 \text{ kPa}$ NPD WS NPD MU1 NPD NPD NPD NPD NPD NPD		
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against heat, weathering, ageing/degradation Water permeability Water vapour permeability Impact noise transmission (for floors) Acoustic absorption index	interpolation or per calculation R _D = thicknest to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces Long-term compressive creep behaviour Short-term water absorption Ung-term water absorption Water vapour diffusion resistance factor Dynamic stiffness Thickness Compressibility Flow resistance Sound absorption	ess / λ_{D} . The thickness needs be rounded down in the pr 5. $d_N = 30 \text{ mm}; T(4)$ ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; $\geq 60 \text{ kPa}$ PL(5)650; $\geq 650 \text{ N}$ TR7,5; $\geq 7,5 \text{ kPa}$ NPD WS NPD MU1 NPD NPD NPD NPD NPD NPD NPD NPD		
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against heat, weathering, ageing/degradation Water versive strength against heat, weathering, ageing/degradation Water permeability Water vapour permeability Impact noise transmission (for floors) Acoustic absorption index Direct airborne sound insulation index Release of dangerous substances to the	interpolation or per calculation R _D = thicknest to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces Long-term compressive creep behaviour Short-term water absorption Long-term water absorption Water vapour diffusion resistance factor Dynamic stiffness Thickness Compressibility Flow resistance	ess / λ_{D} . The thickness needs be rounded down in the or 5. $d_N = 30 \text{ mm}; T(4)$ ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; $\geq 60 \text{ kPa}$ PL(5)650; $\geq 650 \text{ N}$ TR7,5; $\geq 7,5 \text{ kPa}$ NPD WS NPD MU1 NPD NPD NPD NPD NPD NPD		
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against heat, weathering, ageing/degradation Water versive strength against heat, weathering, ageing/degradation Water permeability Water vapour permeability Impact noise transmission (for floors) Acoustic absorption index Direct airborne sound insulation index Release of dangerous substances to the indoor environment	interpolation or per calculation R _D = thickness to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces Long-term compressive creep behaviour Short-term water absorption Ung-term water absorption Ung-term vater absorption Dynamic stiffness Thickness Compressibility Flow resistance Sound absorption Flow resistance Release of dangerous substances	ess / λ_{D} . The thickness needs be rounded down in the pr 5. $d_N = 30 \text{ mm}; T(4)$ ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; $\geq 60 \text{ kPa}$ PL(5)650; $\geq 650 \text{ N}$ TR7,5; $\geq 7,5 \text{ kPa}$ NPD WS NPD WS NPD MU1 NPD NPD NPD NPD NPD NPD NPD NPD NPD NPD	EN 13162:201 +A1:2015	
	heat, weathering, ageing/degradation Reaction to fire Euroclass characteristics Durability of reaction to fire against heat, weathering, ageing/degradation Compressive strength Tensile/ Flexural strength Durability of compressive strength against heat, weathering, ageing/degradation Water versive strength against heat, weathering, ageing/degradation Water permeability Water vapour permeability Impact noise transmission (for floors) Acoustic absorption index Direct airborne sound insulation index Release of dangerous substances to the	interpolation or per calculation R _D = thicknest to be indicated in [m, meters], R _D needs to second place after the decimal point on 0 of Thickness Thermal conductivity of mineral wool produ- Dimensional stability under specified temperature and humidity conditions Reaction to Fire, Euroclass No change in reaction to fire properties for Compressive stress at 10 % deformation Point load at 5 mm deformation Tensile strength perpendicular to faces Long-term compressive creep behaviour Short-term water absorption Ung-term water absorption Water vapour diffusion resistance factor Dynamic stiffness Thickness Compressibility Flow resistance Sound absorption Flow resistance	ess / λ_{D} . The thickness needs be rounded down in the pr 5. $d_N = 30 \text{ mm}; T(4)$ ucts does not change. DS(70,90) A1 mineral wool products. CS(10)60; $\geq 60 \text{ kPa}$ PL(5)650; $\geq 650 \text{ N}$ TR7,5; $\geq 7,5 \text{ kPa}$ NPD WS NPD MU1 NPD NPD NPD NPD NPD NPD NPD NPD NPD NPD		

(Name / job position):

Leader Quality Assurance

i.V. Oliver Stürze

(Site, date) (signature):

Röhrnbach, 2022-05-31

Olim Stun